神经肽功能与检测方法的研究进展

杨炳琨, 张炜, 王巧, 孔德志

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (3) : 213-221.

PDF(1071 KB)
PDF(1071 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (3) : 213-221. DOI: 10.11669/cpj.2023.03.003
综述

神经肽功能与检测方法的研究进展

  • 杨炳琨1,2, 张炜2, 王巧1*, 孔德志2*
作者信息 +

Progress in Neuropeptide Function and Analytical Methods Research

  • YANG Bing-kun1,2, ZHANG Wei2, WANG Qiao1*, KONG De-zhi2*
Author information +
文章历史 +

摘要

神经肽(neuropeptide)作为一种特殊的信息物质,具有含量低、活性高、作用广泛而复杂的特点,在体内对多种生理功能具有调节作用。以食欲素、胃动素和胆囊收缩素等10种神经肽为例,总结神经肽的生理功能及检测方法。结果显示,目前放射免疫法、酶联免疫法、免疫组织化学法和RNA印迹试验等是常用检测已知神经肽的方法,但这些方法容易受到蛋白质、无机盐和寡糖等影响,并且不能较好区分结构相似的神经肽,使得神经肽检测结果并不理想。随着液质联用技术(LC-MS)和样品前处理技术的发展和应用,提高了神经肽检测的灵敏度和专属性,同时可以检测到未知神经肽,使得神经肽检测得到改善。

Abstract

Neuropeptide, as a special hormone, is characterized by low concentration, high activity, wide and complex effects, and has regulatory effects on various physiological functions in the body.This review summarizes the physiological functions of neuropeptides by taking 10 neuropeptides such as orexin, motilin and cholecystokinin as examples, and also summarizes analytical methods of the neuropeptides.The results showed that currently RIA, ELISA, IHC and Northern blot are commonly used for known neuropeptide determination, but these methods are susceptible to proteins, inorganic salts and oligosaccharides, and cannot distinguish between structurally similar neuropeptides, making the determination unsatisfactory. With the development of liquid mass spectrometry(LC-MS) and sample pretreatment, the sensitivity and specificity of neuropeptide determination have been improved, and LC-MS can detect unknown neuropeptides, allowing the neuropeptide determination to be ameliorated.

关键词

神经肽 / 生理功能 / 放射免疫法 / 酶联免疫法 / 液质联用 / 样品前处理

Key words

neuropeptide / physiological function / RIA / ELISA / LC-MS / sample pretreatment

引用本文

导出引用
杨炳琨, 张炜, 王巧, 孔德志. 神经肽功能与检测方法的研究进展[J]. 中国药学杂志, 2023, 58(3): 213-221 https://doi.org/10.11669/cpj.2023.03.003
YANG Bing-kun, ZHANG Wei, WANG Qiao, KONG De-zhi. Progress in Neuropeptide Function and Analytical Methods Research[J]. Chinese Pharmaceutical Journal, 2023, 58(3): 213-221 https://doi.org/10.11669/cpj.2023.03.003
中图分类号: Q291   

参考文献

[1] SOYA S, SAKURAI T. Evolution of orexin neuropeptide system: structure and function[J]. Front Neurosci, 2020, 14. Doi: 10.3389/fnins.2020.00691.
[2] CHEN X Y, DU Y F, CHEN L. Neuropeptides exert neuroprotective effects in Alzheimer′s disease[J]. Front Mol Neurosci, 2018,11. Doi: 10.3389/fnmol.2018.00493.
[3] SHIMIZU S, TAKENOSHITA N, INAGAWA Y, et al. Positive association between cognitive function and cerebrospinal fluid orexin a levels in Alzheimer′s disease[J]. J Alzheimers Dis, 2020, 73(1): 117-123.
[4] JI M J, ZHANG X Y, CHEN Z, et al. Orexin prevents depressive-like behavior by promoting stress resilience[J]. Mol Psychiatr, 2019, 24(2): 282-293.
[5] HAN D, SHI Y, HAN F. The effects of orexin-A and orexin receptors on anxiety-and depression-related behaviors in a male rat model of post-traumatic stress disorder[J]. J Comp Neurol, 2022, 530(3): 592-606.
[6] KITAZAWA T, KAIYA H. Motilin Comparative Study: Structure, Distribution, Receptors, and Gastrointestinal Motility[J]. Front Endocrinol, 2021, 12. Doi: 10.3389/fendo.2021.700884.
[7] MIEDZYBRODZKA E L, FOREMAN R E, LU V B, et al. Stimulation of motilin secretion by bile, free fatty acids, and acidification in human duodenal organoids[J]. Mol Metab, 2021, 54. Doi: 10.1016/j.molmet.2021.101356.
[8] TACK J, VERBEURE W, MORI H, et al. The gastrointestinal tract in hunger and satiety signalling[J]. United Eur Gastroent J, 2021, 9(6): 727-734.
[9] WANG YY, LU RY, SHI J, et al. CircORC2 is involved in the pathogenesis of slow transit constipation via modulating the signalling of miR-19a and neurotensin/motilin[J]. J Cell Mol Med, 2021, 25(8): 3754-3764.
[10] YANG Z, YE S, XU Z, et al. Dietary synbiotic ameliorates constipation through the modulation of gut microbiota and its metabolic function[J]. Food Res Int, 2021, 147. Doi: 10.1016/j.foodres.2021.110569.
[11] TIAN Y, ZUO L, GUO Q, et al. Potential role of fecal microbiota in patients with constipation[J]. Ther Adv Gastroenter, 2020, 13. Doi: 10.1177/1756284820968423.
[12] REHFELD J F. Cholecystokinin and the hormone concept[J]. Endocr Connect, 2021, 10(3): R139-R150.
[13] HAN Z, BI S, XU Y, et al. Cholecystokinin expression in the development of myocardial hypertrophy[J]. Scanning, 2021, 2021. Doi: 10.1155/2021/8231559.
[14] CAWTHON C R, DE L A SERRE C B. The critical role of CCK in the regulation of food intake and diet-induced obesity[J]. Peptides, 2021, 138: 170492. Doi: 10.1016/j.peptides.2020.170492.
[15] KIM H T, DESOUZA A H, UMHOEFER H, et al. Cholecystokinin attenuates β-cell apoptosis in both mouse and human islets[J]. Transl Res, 2022, 243: 1-13. Doi: 10.1016/j.trsl.2021.10.005.
[16] AKALU Y, MOLLA M D, DESSIE G, et al. Physiological effect of ghrelin on body systems[J]. Int J Endocrinol, 2020, 2020. Doi: 10.1155/2020/1385138.
[17] ERENER T, CERITOGLU K U, AKTEKIN C N, et al. Investigation of the effect of ghrelin on bone fracture healing in rats[J]. Clin Exp Pharmacol Physiol, 2021, 48(10): 1382-1390.
[18] SATO T, OISHI K, KOGA D, et al. Thermoregulatory role of ghrelin in the induction of torpor under a restricted feeding condition[J]. Sci Rep, 2021, 11(1). Doi: 10.1038/s41598-021-97440-y.
[19] YUAN M J, LI W, ZHONG P. Research progress of ghrelin on cardiovascular disease[J]. Biosci Rep, 2021, 41(1). Doi: 10.1042/BSR20203387.
[20] STOYANOVA I, LUTZ D. Ghrelin-mediated regeneration and plasticity after nervous system injury[J]. Front Cell Dev Biol, 2021, 9. Doi: 10.3389/fcell.2021.595914.
[21] YANG C, SUN Y, OUYANG X, et al. Pain may promote tumor progression via substance P-dependent modulation of toll-like receptor-4[J]. Pain Med, 2020, 21(12): 3443-3450.
[22] LI F X, XU F, LIN X, et al. The role of substance P in the regulation of bone and cartilage metabolic activity[J]. Front Endocrinol, 2020, 11. Doi: 10.3389/fendo.2020.00077.
[23] STÖCKL S, EITNER A, BAUER R J, et al. Substance P and alpha-calcitonin gene-related peptide differentially affect human osteoarthritic and healthy chondrocytes[J]. Front Immunol, 2021, 12. Doi: 10.3389/fimmu.2021.722884.
[24] WOJCIECHOWICZ T, BILLERT M, JASASZWILI M, et al. The role of neuropeptide B and its receptors in controlling appetite, metabolism, and energy homeostasis[J]. Int J Mol Sci, 2021, 22(12). Doi: 10.3390/ijms22126632.
[25] GRZELAK T, TYSZKIEWICZ-NWAFOR M, DUTKIEWICZ A, et al. Vaspin(but not neuropeptide B or neuropeptide W) as a possible predictor of body weight normalization in anorexia nervosa[J]. Arch Med Sci, 2021, 17(2): 376-381.
[26] WOJCIECHOWICZ T, BILLERT M, DHANDAPANI P, et al. Neuropeptide B promotes proliferation and differentiation of rat brown primary preadipocytes[J]. Febs Open Bio, 2021, 11(4): 1153-1164.
[27] XING Y, LIU Y, DENG M, et al. The synergistic effects of opioid and neuropeptide B/W in rat acute inflammatory and neuropathic pain models[J]. Eur J Pharmacol, 2021, 898. Doi: 10.1016/j.ejphar.2021.173979.
[28] SHENDE P, DESAI D. Physiological and therapeutic roles of neuropeptide Y on biological functions[J]. Adv Exp Med Biol, 2020, 1237: 37-47.
[29] CHEN W C, LIU Y B, LIU W F, et al. Neuropeptide Y is an immunomodulatory factor: direct and indirect[J]. Front Immunol, 2020, 11. Doi: 10.3389/fimmu.2020.580378.
[30] MIRMAN B, IKEDA I, ZHANG Z, et al. Effects of neuropeptide Y on the microvasculature of human skeletal muscle[J]. Surgery, 2020, 168(1): 155-159.
[31] SUN W, ZHANG Z, FENG X, et al. Serum neuropeptide Y: a potential prognostic marker of intracerebral hemorrhage[J]. Dis Mark, 2021, 2021. Doi: 10.1155/2021/7957013.
[32] GENDERS S G, SCHELLER K J, DJOUMA E. Neuropeptide modulation of addiction: Focus on galanin[J]. Neurosci Biobehav Rev, 2020, 110: 133-149.
[33] FANG P, YU M, SHI M , et al. Galanin peptide family regulation of glucose metabolism[J]. Front Neuroendocrinol, 2020, 56. Doi: 10.1016/j.yfrne.2019.100801.
[34] YU M, FANG P, WANG H, et al. Beneficial effects of galanin system on diabetic peripheral neuropathic pain and its complications[J]. Peptides, 2020, 134. Doi: 10.1016/j.peptides.2020.170404.
[35] STIEDL O, KUTEEVA E, HÖKFELT T, et al. Injection of galanin into the dorsal hippocampus impairs emotional memory independent of 5-HT(1A) receptor activation[J]. Behav Brain Res, 2021, 405. Doi: 10.1016/j.bbr.2021.113178.
[36] TABIKH M, CHAHLA C, OKDEH N , et al. Parkinson disease: Protective role and function of neuropeptides[J]. Peptides, 2022, 151. Doi: 10.1016/j.peptides.2021.170713.
[37] STOJAKOVIC A, AHMAD S M, MALHOTRA S, et al. The role of pituitary adenylyl cyclase-activating polypeptide in the motivational effects of addictive drugs[J]. Neuropharmacology, 2020, 171: 108109. Doi: 10.1016/j.neuropharm.2020.108109.
[38] OJALA J, TOOKE K, HSIANG H, et al. PACAP/PAC1 Expression and Function in Micturition Pathways[J]. J Mol Neurosci, 2019, 68(3): 357-367.
[39] SZCZEPANSKA-SADOWSKA E, CUDNOCH-JEDRZEJEWSKA A, SADOWSKI B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases[J]. Neuropeptides, 2020, 81: 102046. Doi: 10.1016/j.npep.2020.102046.
[40] IMANISHI A, KAWAZOE T, HAMADA Y, et al. Early detection of Niemann-pick disease type C with cataplexy and orexin levels: continuous observation with and without Miglustat[J]. Orphanet J Rare Dis, 2020, 15(1): 269. Doi: 10.1186/s13023-020-01531-4.
[41] ZHU Y, HE J, SHI J, et al. Significance of determining plasma orexin levels and analysis of related factors for the diagnosis of patients with narcolepsy[J]. Sleep Med, 2020, 74: 141-144.
[42] SKILLMAN B, KERRIGAN S. Identification of suvorexant in blood using LC-MS-MS: important considerations for matrix effects and quantitative interferences in targeted assays[J]. J Anal Toxicol, 2020, 44(3): 245-255.
[43] CHROBOK L, BAJKACZ S, KLICH J D, et al. LC-MS/MS Analysis Elucidates a Daily Rhythm in Orexin A Concentration in the Rat Vitreous Body[J]. Molecules, 2021, 26(16):. Doi: 10.3390/molecules26165036.
[44] LINDSTRÖM M, SCHINKELSHOEK M, TIENARI P J, et al. Orexin-A measurement in narcolepsy: a stability study and a comparison of LC-MS/MS and immunoassays[J]. Clin Biochem, 2021, 90: 34-39.
[45] WANG C, WANG B, AILI M, et al. Effect of Artemisia rupestris L. extract on gastrointestinal hormones and brain-gut peptides in functional dyspepsia rats[J]. Evid Based Complement Alternat Med, 2020, 2020. Doi: 10.1155/2020/2528617.
[46] MA J, MAO X, CONG H, et al. A robust composite hydrogel consisting of polypyrrole and β-cyclodextrin-based supramolecular complex for the label-free amperometricimmunodetection of motilin with well-defined dual signal response and high sensitivity[J]. Biosens Bioelectron, 2020, 173. Doi: 10.1016/j.bios.2020.112810.
[47] KAY R G, FOREMAN R E, ROBERTS G P, et al. Mass spectrometric characterisation of the circulating peptidome following oral glucose ingestion in control and gastrectomised patients[J]. Rapid Commun Mass Spectrom, 2020, 34(18). Doi: 10.1002/rcm.8849.
[48] FU J, TANG Y, ZHANG Z, et al. Gastrin exerts a protective effect against myocardial infarction via promoting angiogenesis[J]. Mol Med, 2021, 27(1). Doi: 10.1186/s10020-021-00352-w.
[49] DALY K, BURDYGA G, AL-RAMMAHI M, et al. Toll-like receptor 9 expressed in proximal intestinal enteroendocrine cells detects bacteria resulting in secretion of cholecystokinin[J]. Biochem Biophys Res Commun, 2020, 525(4): 936-940.
[50] BITARAFAN V, FITZGERALD P, LITTLE T J, et al. Effects of intraduodenal infusion of the bitter tastant, quinine, on antropyloroduodenal motility, plasma cholecystokinin, and energy intake in healthy men[J]. J Neurogastroenterol, 2019, 25(3): 413-422.
[51] MARTINEZ D V, POMRENZE M B, MANNING C E, et al. Somatodendritic release of cholecystokinin potentiates GABAergic synapses onto ventral tegmental area dopamine cells[J]. Biol Psychiatry, 2022. Doi: 10.1016/j.biopsych.2022.06.011.
[52] XIAO L, ZHANG H, WANG Y, et al. Dysregulation of the ghrelin/RANKL/OPG pathway in bone mass is related to AIS osteopenia[J]. Bone, 2020, 134. Doi: 10.1016/j.bone.2020.115291.
[53] BREITHAUPT L, CHUNGA-ITURRY N, LYALL A E, et al. Developmental stage-dependent relationships between ghrelin levels and hippocampal white matter connections in low-weight anorexia nervosa and atypical anorexia nervosa[J]. Psychoneuroendocrino, 2020, 119. Doi: 10.1016/j.psyneuen.2020.104722.
[54] O′NEILL M J, CHAN K, JAYNES J M, et al. LC-MS/MS assay coupled with carboxylic acid magnetic bead affinity capture to quantitatively measure cationic host defense peptides(HDPs) in complex matrices with application to preclinical pharmacokinetic studies[J]. J Pharm Biomed, 2020, 181. Doi: 10.1016/j.jpba.2020.113093.
[55] LANGE T, THOMAS A, WALPURGIS K , et al. Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS[J]. Anal Bioanal Chem, 2020, 412(15): 3765-3777.
[56] THOMAS A, KROMBHOLZ S, WOLF C, et al. Determination of ghrelin and desacyl ghrelin in human plasma and urine by means of LC-MS/MS for doping controls[J]. Drug Test Anal, 2021, 13(11-12): 1862-1870.
[57] ZHONG H, HU Y, YU F. A review on ghrelin and fish reproduction[J]. Reprod Breed, 2021, 1(2): 128-135.
[58] SCHRÖDER J B, MARIAN T, CLAUS I, et al. Substance P Saliva Reduction Predicts Pharyngeal Dysphagia in Parkinson′s Disease[J]. Front Neurol, 2019, 10. Doi: 10.3389/fneur.2019.00386.
[59] RAMOS L, MASSEY CJ, ASOKAN A, et al. Examination of sex differences in a chronic rhinosinusitis surgical cohort[J]. Otolaryng Head Neck, 2022, 167(3): 583-589.
[60] BLANCO-VÁZQUEZ M, VÁZQUEZ A, FERNÁNDEZ I, et al. Inflammation-related molecules in tears of patients with chronic ocular pain and dry eye disease[J]. Exp Eye Res, 2022, 219. Doi: 10.1016/j.exer.2022.109057.
[61] FEICKERT M, BURCKHARDT B B. Validated mass spectrometric assay for the quantification of substance P and human hemokinin-1 in plasma samples: A design of experiments concept for comprehensive method development[J]. J Pharm Biomed, 2020, 191. Doi: 10.1016/j.jpba.2020.113542.
[62] FAN Y, KIM D H, GWAK Y S, et al. The role of substance P in acupuncture signal transduction and effects[J]. Brain Behav Immun, 2021, 91: 683-694.
[63] PANDEY S, TUMA Z, PERONI E, et al. Identification of NPB, NPW and their receptor in the rat heart[J]. Int J Mol Sci, 2020, 21(21). Doi: 10.1016/j.bbi.2020.08.016.
[64] KLUGE N, DACEY M, HADAYA J, et al. Rapid measurement of cardiac neuropeptide dynamics by capacitive immunoprobe in the porcine heart[J]. Am J Physiol, 2021, 320(1): H66-H76.
[65] CHAO G, WANG Z, ZHANG S. Research on correlation between psychological factors, mast cells, and PAR-2 signal pathway in irritable bowel syndrome[J]. J Inflamm Res, 2021, 14: 1427-1436.
[66] BONGAERTS J, SEGERS K, VAN OUDENHOVE L, et al. A comparative study of UniSpray and electrospray sources for the ionization of neuropeptides in liquid chromatography tandem mass spectrometry[J]. J Chromatogr A, 2020, 1628. Doi: 10.1016/j.chroma.2020.461462.
[67] SAAD K, ABDEL-RAHMAN A A, AL-ATRAM A A, et al. Serum galanin in children with autism spectrum disorder[J]. Child Psychiatry Hum Dev, 2022, 53(2): 300-306.
[68] TANRIVERDI M, KULTURSAY N, TEKGUL H, et al. Clinical value of a set of neuropeptides in term and preterm neonates with seizures: Brain derived neurotrophic factor, galanin and neuropeptide Y[J]. J Clin Neurosci, 2020, 74: 168-174.
[69] FALKENSTETTER S, LEITNER J, BRUNNER S M, et al. Galanin system in human glioma and pituitary adenoma[J]. Front Endocrinol, 2020, 11. Doi: 10.3389/fendo.2020.00155.
[70] WARFVINGE K, KRAUSE D N, MADDAHI A, et al. Estrogen receptors α, β and GPER in the CNS and trigeminal system-molecular and functional aspects[J]. J Headache Pain, 2020, 21(1). Doi: 10.1186/s10194-020-01197-0.
[71] ADAMSKA I, MALZ M, LEWCZUK B, et al. Daily profiles of neuropeptides, catecholamines, and neurotransmitter receptors in the chicken pineal gland[J]. Front Physiol, 2018, 9: 1972. Doi: 10.3389/fphys.2018.01972.
[72] EDVINSSON J, GRELL A S, WARFVINGE K, et al. Differences in pituitary adenylatecyclase-activating peptide and calcitonin gene-related peptide release in the trigeminovascularsystem[J]. Cephalalgia, 2020, 40(12): 1296-1309.
[73] KIM I, KIM Y, KANG D, et al. Neuropeptides involved in facial nerve regeneration[J]. Biomedicines, 2021, 9(11). Doi: 10.3390/biomedicines9111575.
[74] SHALASH A O, AZUAR A, MADGE H, et al. Detection and quantification of SARS-CoV-2 receptor binding domain neutralization by a sensitive competitive ELISA assay[J]. Vaccines, 2021, 9(12). Doi: 10.3390/vaccines9121493.
[75] XUE H, HAN J, HE B, et al. Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats[J]. Food Funct, 2021, 12(11): 5157-5170.
[76] CHEN F, CHENG Z, PENG Y, et al. A liquid chromatography-tandem mass spectrometry(LC-MS/MS)-based assay for simultaneous quantification of aldosterone, renin activity, and angiotensin Ⅱ in human plasma[J]. J Chromatogr B, 2021, 1179. Doi: 10.1016/j.jchromb.2021.122740.
[77] VOCAT C, DUNAND M, HUBERS S A, et al. Quantification of neuropeptide Y and four of its metabolites in human plasma by micro-UHPLC-MS/MS[J]. Anal Chem, 2020, 92(1): 859-866.
[78] LINDSTRÖM M, SCHINKELSHOEK M, TIENARI P J, et al. Orexin-A measurement in narcolepsy: A stability study and a comparison of LC-MS/MS and immunoassays[J]. Clin Biochem, 2021, 90: 34-39. Doi: 10.1016/j.clinbiochem.2021.01.009.
[79] TERRIZZI A R, MARTINEZ M P, FERNANDEZ-SOLARI J. Altered production of reproductive neuropeptides in rats subjected to chronic intermittent hypoxia[J]. J Integr Neurosci, 2021, 20(3): 651-657.
[80] MANCINI A, CURRÒ D, CIPOLLA C, et al. Evaluation of Kisspeptin levels in prepubertal obese and overweight children: sexual dimorphism and modulation of antioxidant levels[J]. Eur Rev Med Pharmacol Sci, 2021, 25(2): 941-949.
[81] RAMIREZ-VILLAFAÑA M, SALDAÑA-CRUZ A M, ACEVES-ACEVES J A, et al. Serum neuropeptide Y levels are associated with TNF-α levels and disease activity in rheumatoid arthritis[J]. J Immunol Res, 2020, 2020. Doi: 10.1155/2020/8982163.
[82] ZHANG Q, MIAO Q, YANG Y, et al. Neuropeptide Y plays an important role in the relationship between brain glucose metabolism and brown adipose tissue activity in healthy adults: a PET/CT Study[J]. Front Endocrinol, 2021, 12: 694162. Doi: 10.3389/fendo.2021.694162.
[83] FALKENSTETTER S, LEITNER J, BRUNNER S M, et al. Galanin system in human glioma and pituitary adenoma[J]. Front Endocrinol, 2020, 11. Doi: 10.3389/fendo.2020.00155.
[84] XU X, CAI X, LIU X, et al. Possible involvement of neuropeptide and neurotransmitter receptors in Adenomyosis[J]. Reprod Biol Endocrinol, 2021, 19(1). Doi: 10.1186/s12958-021-00711-6.
[85] GATENHOLM B, GOBOM J, SKILLBÄCK T, et al. Peptidomic analysis of cartilage and subchondral bone in OA patients[J]. Eur J Clin Invest, 2019, 49(5). Doi: 10.1111/eci.13082.
[86] ZHOU CX, GAO M, HAN B, et al. Quantitative peptidomics of mouse brain after infection with cyst-forming toxoplasma gondii[J]. Front Immunol, 2021, 12. Doi: 10.3389/fimmu.2021.681242.
[87] THOMAS A, YANG R, PETRING S, et al. Simplified quantification of insulin, its synthetic analogs and C-peptide in human plasma by means of LC-HRMS[J]. Drug Test Anal, 2020, 12(3): 382-390.
[88] THOMAS A, BENZENBERG L, BALLY L, et al. Facilitated qualitative determination of insulin, its synthetic analogs, and C-peptide in human urine by means of LC-HRMS[J]. Metabolites, 2021, 11(5). Doi: 10.3390/metabo11050309.
[89] KWOK K Y, CHOI T, KWOK W H, et al. Detection of bioactive peptides including gonadotrophin-releasing factors(GnRHs) in horse urine using ultra-high performance liquid chromatography-high resolution mass spectrometry(UHPLC/HRMS)[J]. Drug Test Anal, 2020, 12(9): 1274-1286.
[90] BUZY A, ALLAIN C, HARRINGTON J, et al. Peptidomics of Haemonchuscontortus[J]. ACS Omega, 2021, 6(15): 10288-10305.
[91] DOMINGO G, BENUSSI L, SARACENO C, et al. N-terminally truncated and pyroglutamate-modified Aβ forms are measurable in human cerebrospinal fluid and are potential markers of disease progression in Alzheimer′s disease[J]. Front Neurosci-Switz, 2021, 15. Doi: 10.3389/fnins.2021.708119.
[92] HUANG Y P, ROBINSON R C, DIAS F, et al. Solid-phase extraction approaches for omproving pligosaccharide and small peptide identification with liquid chromatography-high-resolution mass spectrometry: a case study on proteolyzed almond extract[J]. Foods, 2022, 11(3). Doi: 10.3390/foods11030340.
[93] DELANEY K, HU M, HELLENBRAND T, et al. Mass spectrometry quantification, localization, and discovery of feeding-related neuropeptides in cancer borealis[J]. ACS Chem Neurosci, 2021, 12(4): 782-798.
[94] SAUER C S, LI L. Mass spectrometric profiling of neuropeptides in response to copper toxicity via isobaric tagging[J]. Chem Res Toxicol, 2021, 34(5): 1329-1336.
[95] LI N, ZHOU Y, WANG J, et al. Sequential precipitation and delipidation enables efficient enrichment of low-molecular weight proteins and peptides from human plasma[J]. J Proteome Res, 2020, 19(8): 3340-3351.
[96] VU N Q, BUCHBERGER A R, JOHNSON J, et al. Complementary neuropeptide detection in crustacean brain by mass spectrometry imaging using formalin and alternative aqueous tissue washes[J]. Anal Bioanal Chem, 2021, 413(10): 2665-2673.
[97] DELANEY K, HU M, WU W, et al. Mass spectrometry profiling and quantitation of changes in circulating hormones secreted over time in cancer borealis hemolymph due to feeding behavior[J]. Anal Bioanal Chem, 2022, 414(1): 533-543.
[98] LI Z, WANG Q, MAO J, et al. Selective enrichment of N-terminal proline peptides via hydrazide chemistry for proteomics analysis[J]. Anal Chim Acta, 2021, 1142: 48-55.
[99] CHANG C H, CHANG H Y, RAPPSILBER J, et al. Isolation of acetylated and unmodified protein N-terminal peptides by strong cation exchange chromatographic separation of trypN-digested peptides[J]. Mol Cell Proteomics, 2021, 20. Doi: 10.1074/mcp.TIR120.002148.
[100]MCPHERSON R L, ONG S, LEUNG A K L. Ion-pairing with triethylammonium acetate improves solid-phase extraction of ADP-ribosylated peptides[J]. J Proteome Res, 2020, 19(2): 984-990.

基金

国家自然科学基金资助(82174004)
PDF(1071 KB)

Accesses

Citation

Detail

段落导航
相关文章

/